Goto

Collaborating Authors

 Nebraska


Replicability in Learning: Geometric Partitions and Sperner-KKM Lemma

Neural Information Processing Systems

Recent works have revealed the role of geometric partitions and Sperner's lemma (and its variations) in designing replicable learning algorithms and in establishing impossibility results.



Learning discrete distributions with infinite support

Neural Information Processing Systems

We present a novel approach to estimating discrete distributions with (potentially) infinite support in the total variation metric. In a departure from the established paradigm, we make no structural assumptions whatsoever on the sampling distribution. In such a setting, distribution-free risk bounds are impossible, and the best one could hope for is a fully empirical data-dependent bound. We derive precisely such bounds, and demonstrate that these are, in a well-defined sense, the best possible. Our main discovery is that the half-norm of the empirical distribution provides tight upper and lower estimates on the empirical risk.


List and Certificate Complexities in Replicable Learning Peter Dixon 1, A. Pavan 2, and N. V. Vinodchandran

Neural Information Processing Systems

We investigate replicable learning algorithms. Informally a learning algorithm is replicable if the algorithm outputs the same canonical hypothesis over multiple runs with high probability, even when different runs observe a different set of samples from the unknown data distribution. In general, such a strong notion of replicability is not achievable. Thus we consider two feasible notions of replicability called list replicability and certificate replicability.


Replicability in Learning: Geometric Partitions and Sperner-KKM Lemma

Neural Information Processing Systems

Recent works have revealed the role of geometric partitions and Sperner's lemma (and its variations) in designing replicable learning algorithms and in establishing impossibility results.



Learning discrete distributions with infinite support

Neural Information Processing Systems

We present a novel approach to estimating discrete distributions with (potentially) infinite support in the total variation metric. In a departure from the established paradigm, we make no structural assumptions whatsoever on the sampling distribution. In such a setting, distribution-free risk bounds are impossible, and the best one could hope for is a fully empirical data-dependent bound. We derive precisely such bounds, and demonstrate that these are, in a well-defined sense, the best possible. Our main discovery is that the half-norm of the empirical distribution provides tight upper and lower estimates on the empirical risk.


Benchmarking community drug response prediction models: datasets, models, tools, and metrics for cross-dataset generalization analysis

arXiv.org Artificial Intelligence

Deep learning (DL) and machine learning (ML) models have shown promise in drug response prediction (DRP), yet their ability to generalize across datasets remains an open question, raising concerns about their real-world applicability. Due to the lack of standardized benchmarking approaches, model evaluations and comparisons often rely on inconsistent datasets and evaluation criteria, making it difficult to assess true predictive capabilities. In this work, we introduce a benchmarking framework for evaluating cross-dataset prediction generalization in DRP models. Our framework incorporates five publicly available drug screening datasets, six standardized DRP models, and a scalable workflow for systematic evaluation. To assess model generalization, we introduce a set of evaluation metrics that quantify both absolute performance (e.g., predictive accuracy across datasets) and relative performance (e.g., performance drop compared to within-dataset results), enabling a more comprehensive assessment of model transferability. Our results reveal substantial performance drops when models are tested on unseen datasets, underscoring the importance of rigorous generalization assessments. While several models demonstrate relatively strong cross-dataset generalization, no single model consistently outperforms across all datasets. Furthermore, we identify CTRPv2 as the most effective source dataset for training, yielding higher generalization scores across target datasets. By sharing this standardized evaluation framework with the community, our study aims to establish a rigorous foundation for model comparison, and accelerate the development of robust DRP models for real-world applications.


Text-Guided Image Invariant Feature Learning for Robust Image Watermarking

arXiv.org Artificial Intelligence

Ensuring robustness in image watermarking is crucial for and maintaining content integrity under diverse transformations. Recent self-supervised learning (SSL) approaches, such as DINO, have been leveraged for watermarking but primarily focus on general feature representation rather than explicitly learning invariant features. In this work, we propose a novel text-guided invariant feature learning framework for robust image watermarking. Our approach leverages CLIP's multimodal capabilities, using text embeddings as stable semantic anchors to enforce feature invariance under distortions. We evaluate the proposed method across multiple datasets, demonstrating superior robustness against various image transformations. Compared to state-of-the-art SSL methods, our model achieves higher cosine similarity in feature consistency tests and outperforms existing watermarking schemes in extraction accuracy under severe distortions. These results highlight the efficacy of our method in learning invariant representations tailored for robust deep learning-based watermarking.


Large Language Models for Multi-Facility Location Mechanism Design

arXiv.org Artificial Intelligence

Designing strategyproof mechanisms for multi-facility location that optimize social costs based on agent preferences had been challenging due to the extensive domain knowledge required and poor worst-case guarantees. Recently, deep learning models have been proposed as alternatives. However, these models require some domain knowledge and extensive hyperparameter tuning as well as lacking interpretability, which is crucial in practice when transparency of the learned mechanisms is mandatory. In this paper, we introduce a novel approach, named LLMMech, that addresses these limitations by incorporating large language models (LLMs) into an evolutionary framework for generating interpretable, hyperparameter-free, empirically strategyproof, and nearly optimal mechanisms. Our experimental results, evaluated on various problem settings where the social cost is arbitrarily weighted across agents and the agent preferences may not be uniformly distributed, demonstrate that the LLM-generated mechanisms generally outperform existing handcrafted baselines and deep learning models. Furthermore, the mechanisms exhibit impressive generalizability to out-of-distribution agent preferences and to larger instances with more agents.